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Fast Data Front Ends for Hadoop

Building streaming data applications that can manage the massive
quantities of data generated from mobile devices, M2M, sensors,
and other IoT devices is a big challenge many organizations face
today.

Traditional tools, such as conventional database systems, do not
have the capacity to ingest fast data, analyze it in real time, and
make decisions. New technologies, such as Apache Spark and
Apache Storm, are gaining interest as possible solutions to handling
fast data streams. However, only solutions such as VoltDB provide
streaming analytics with full Atomicity, Consistency, Isolation, and
Durability (ACID) support.

Employing a solution such as VoltDB, which handles streaming
data, provides state, ensures durability, and supports transactions
and real-time decisions, is key to benefitting from fast (and big)
data.

Data ingestion is a pressing problem for any large-scale system. Sev‐
eral architecture options are available for cleaning and pre-
processing data for efficient and fast storage. In this report, we will
discuss the advantages and disadvantages of various fast data front
ends for Hadoop.
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Figure 1-1. Typical big data architecture

Figure 1-1 presents a high-level view of a typical big data architec‐
ture. A key component is the HDFS file store. On the left-hand side
of HDFS, various data sources and systems, such as Flume and
Kafka, move data into HDFS. The right-hand side of HDFS shows
systems that consume the data and perform processing, analysis,
transformations, or cleanup of the data. This is a very traditional
batch-oriented picture of big data.

All systems on the left-hand side are designed only to move data
into HDFS. These systems do not perform any processing. If we add
an extra processing step, as shown in Figure 1-2, the following sig‐
nificant benefits are possible:

1. We can obtain better data in HDFS, because the data can be fil‐
tered, aggregated, and enriched.

2. We can obtain lower latency to understanding what’s going on
with this data with the ability to query directly from the inges‐
tion engine using dashboards, analytics, triggers, counters, and
so on for real-time alerts. First, this allows us to understand
things immediately as the data are coming in, not later in some
batch process. In innumerable business use cases, response
times in minutes versus hours, or even seconds versus minutes,
make a huge difference (to say nothing of the growing number
of life-critical applications in the IoT and the Industrial Inter‐
net). Second, the ability to combine analytics with transactions
is a very powerful combination that goes beyond simple stream‐
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ing analytics and dashboards to provide intelligence and context
in real time.

Figure 1-2. Adding an ingestion engine

Let’s now discuss the ingestion engine, shown in Figure 1-2, in more
detail. We’ll begin with the three main value propositions of using
an ingestion engine as a fast data front end for Hadoop.

Value Proposition #1: Cleaning Data
Filtering, de-duplication, aggregation, enrichment, and de-
normalization at ingestion can save considerable time and money. It
is easier to perform these actions in a fast data front end than it is to
do so later in batch mode. It is almost zero cost in time to perform
these actions at ingestion, as opposed to running a separate batch
job to clean the data. Running a separate batch job requires storing
the data twice—not to mention the processing latency.

De-duplication at ingestion time is an obvious example. A good use
case would be sensor networks. For example, RFID tags may trip a
sensor hundreds of times, but we may only really be interested in
knowing that an RFID tag went by a sensor once. Another common
use case is when a sensor value changes. For example, if we have a
temperature sensor showing 72 degrees for 6 hours and then sud‐
denly it shows 73 degrees, we really need only that one data point
that says the temperature went up a degree at a particular time. A
fast data front end can be used to do this type of filtering.
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A common alternative approach is to dump everything into HDFS
and sort the data later. However, sorting data at ingestion time can
provide considerable benefits. For example, we can filter out bad
data, data that may be too old, or data with missing values that
requires further processing. We can also remove test data from a
system. These operations are relatively inexpensive to perform with
an ingestion engine. We can also perform other operations on our
data, such as aggregation and counting. For example, suppose we
have a raw stream of data arriving at 100,000 events per second, and
we would really like to send one aggregated row per second to
Hadoop. We filter by several orders of magnitude to have less data.
The aggregated row can pick from operations such as count, min,
max, average, sum, median, and so on.

What we are doing here is taking a very large stream of data and
making it into a very manageable stream of data in our HDFS data
set. Another thing we can do with an ingestion engine is delay send‐
ing aggregates to HDFS to allow for late-arriving events. This is a
common problem with other streaming systems; events arrive a few
seconds too late and data has already been sent to HDFS. By pre-
processing on ingest, we can delay sending data until we are ready.
Avoiding re-sending data speeds operations and can make HDFS
run orders of magnitude faster.

Consider the following real-life example taken from a call center
using VoltDB as its ingestion engine. An event is recorded: a call
center agent is connected to a caller. The key question is: “How long
was the caller kept on hold?” Somewhere in the stream before this
event was the hold start time, which must be paired up with the
event signifying the hold end time. The user has a Service Level
Agreement (SLA) for hold times, and this length is important.
VoltDB can easily run a query to find correlating events, pair those
up, and push those in a single tuple to HDFS. Thus, we can send the
record of the hold time, including the start and duration, and then
later any reporting we do in HDFS will be much simpler and more
straightforward.

Another example is from the financial domain. Suppose we have a
financial application that receives a message from the stock
exchange that order 21756 was executed. But what is order 21756?
The ingestion engine would have a table of all outstanding orders at
the stock exchange, so instead of just sending these on to HDFS, we
could send HDFS a record that 21756 is an order for 100 Microsoft
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shares, by a particular trader, using a particular algorithm and
including the timestamp of when the order was placed, the time‐
stamp it was executed, and the price the shares were bought for.

Data is typically de-normalized in HDFS even though it may be nor‐
malized in the ingestion engine. This makes analytic queries in
HDFS much easier; its schema-on-read capability enables us to store
data without knowing in advance how we’ll use it. Performing some
organization (analytics) at ingestion time with a smart ingestion
engine will be very inexpensive in both time and processing power,
and can have a big payoff later, with much faster analytical queries.

Value Proposition #2: Understanding
Value proposition #2 is closely related to the first value proposition.
Things we discussed in value proposition #1 regarding storing better
quality data into HDFS can also be used to obtain a better under‐
standing of the data. Thus, if we are performing aggregations, we
can also populate dashboards with aggregated data. We can run
queries that support filtering or enrichment. We can also filter data
that meets very complex criteria by using powerful SQL queries to
understand whether data is interesting or not. We can write queries
that make decisions on ingest. Many VoltDB customers use the tech‐
nology for routing decisions, including whether to respond to cer‐
tain events. For example in an application that monitors API calls
on an online service, has a limit been reached? Or is the limit being
approached? Should an alert be triggered? Should a transaction be
allowed? A fast data front end can make many of these decisions
easily and automatically.

Business logic can be created using a mix of SQL queries and Java
processing to determine whether a certain condition has been met,
and take some type of transactional action based upon it. It is also
possible to run deep analytical queries at ingestion time, but this is
not necessarily the best use for a fast data front end. A better exam‐
ple would be to use a dashboard with aggregates. For example, we
might want to see outstanding positions by feature or by algorithm
on a web page that refreshes every second. Another example might
be queries that support filtering or enrichment at ingestion—seeing
all events related to another event and determining if that event is
the last in a related chain in order to push a de-normalized enriched
tuple to HDFS.
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Value Proposition #3: Decision Making
Queries that make a decision on ingest are another example of using
fast data front ends to deliver business value. For example: a click
event arrives in an ad-serving system, and we need to know what ad
was shown and analyze the response to the ad. Was the click fraudu‐
lent? Was it a robot? Which customer account do we debit because
the click came in and it turns out that it wasn’t fraudulent? Using
queries that look for certain conditions, we might ask questions
such as: “Is this router under attack based on what I know from the
last hour?” Another example might deal with SLAs: “Is my SLA
being met based on what I know from the last day or two? If so,
what is the contractual cost?” In this case, we could populate a dash‐
board that says SLAs are not being met, and it has cost so much in
the last week. Other deep analytical queries, such as “How many
purple hats were sold on Tuesdays in 2015 when it rained?” are
really best served by systems such as Hive or Impala. These types of
queries are ad hoc and may involve scanning lots of data; they’re
typically not fast data queries.

One Solution In Depth
Given the goals we have discussed so far, we want our system to be
as robust and fault tolerant as possible, in addition to keeping our
data safe. But it is also really important that we get the correct
answers from our system. We want the system to do as much work
for the user as possible, and we don’t want to ask the developers to
write code to do everything. The next section of this report will
examine VoltDB’s approach to the problems of pre-processing data
and fast analytics on ingest. VoltDB is designed to handle the hard
parts of the distributed data processing infrastructure, and allow
developers to focus on the business logic and customer applications
they’re building.

So how does this actually work when we want to both understand
queries and process data? Essentially because of VoltDB’s strong
ACID model, we just write the logic in Java code, mixed with SQL.
This is not trivial to do, but it is easier because the state of the data
and the processing are integrated. We also don’t have to worry about
system failure, because if the database needs to be rolled back, we
have full atomicity.
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Figure 1-3. VoltDB solution

In Figure 1-3, we have a graphic that shows the VoltDB solution to
the ingestion engine discussed earlier. We have a stored procedure
that runs a mix of Java and SQL, and it can take input data. Some‐
thing that separates VoltDB from other fast data front end solutions
is that VoltDB can directly respond to the caller. We can push data
out into HDFS; we can also push data out into SQL analytics stores,
CSV files, and even SMS alerts. State is tightly integrated, and we
can return SQL queries, using JDBC, ODBC, even JavaScript over a
REST API. VoltDB has a command-line interface, and native drivers
that understand VoltDB’s clustering. In VoltDB, state and processing
are fully integrated and state access is global. Other stream-
processing approaches, such as Apache Storm, do not have integra‐
ted state. Furthermore, state access may or may not be global, and it
is disconnected. In systems such as Spark Streaming, state access is
not global, and is very limited. There may be good reasons to limit
state access, but it is a restricted way to program against an input
stream.

VoltDB supports standard SQL with extensions. It is fully consistent,
with ACID support, as mentioned earlier. It supports synchronous,
inter-cluster High Availability (HA). It also makes writing applica‐
tions easier because VoltDB supports native aggregations with full,
SQL-integrated, live materialized views. Users can write a SQL state‐
ment saying “maintain this view as my data changes.” We can query
that view in milliseconds. Also available are easy counting, ranking,
and sorting operations. The ranking support is not just the top 10,
for example. We can also perform ranking such as “show me the 10
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people who are above me and behind me.” VoltDB also uses existing
Java libraries.

Bonus Value Proposition: The Serving Layer
We can connect Hadoop directly to VoltDB using SQL. This is
essential, since we cannot easily get real-time responses with high
concurrency from HDFS. Systems designed to query HDFS are not
designed to run thousands or hundreds of thousands of requests per
second. We cannot directly query Kafka or Flume, as these tools are
not designed to move data. So querying our fast data front end
makes perfect sense. VoltDB enables us to build a fast data front end
that uses the familiar SQL language and standards. SQL is widely
used today, and many companies have standardized on it. Some
NoSQL database vendors also have embraced SQL to varying
degrees.

Resilient and Reliable Data Front Ends
Having discussed the value that a fast data front end can provide, it’s
important to look at the theoretical and practical problems that can
come up in an implementation. First, how wrong can data be?
Delivery guarantees are a primary check on data reliability. Delivery
guarantees typically fall into one of the following four categories:

1. At least once
2. At most once
3. None of the above
4. Exactly once

At-least-once delivery occurs when the status of an event is unclear.
If we cannot confirm that a downstream system received an event,
we send it again. This is not always easy to do because the event
source needs to be robust. We cannot remove events until we have
confirmed they have been processed by a downstream system, so it’s
necessary to buffer events for a little while and then resend them if it
cannot be confirmed they have been received. Kafka makes this a lot
easier; even so, it’s easy to get wrong, and it’s important to read the
Kafka documentation to ensure this is being done correctly.

At-most-once delivery sends all events once. If something fails, some
per-event data may be lost. How many events are lost is not always
clear.
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None-of-the-above is common, but users must be aware of the risks
of duplicate data, missed data, or wrong answers. In this scenario,
using Kafka as a high-level consumer, developers can keep track of
roughly where they are in the stream, but not necessarily exactly.
This periodically commits the offset pulled from Kafka, but doesn’t
necessarily track which offset was pushed into the downstream sys‐
tem. Using a Kafka high-level consumer, it is possible that we could
have read more from Kafka or less from Kafka than we put into the
downstream system, depending on how things are working. We
could use one of Kafka’s APIs if we really want to get something
closer to exactly-once delivery. Any time two systems are involved
in processing data, it may be difficult to get exactly-once delivery.
The lesson here is that, even if we think we have at-least-once deliv‐
ery, we might also have none-of-the-above.

Our final option is exactly-once delivery. There are two ways to get
exactly-once delivery or very, very close to exactly-once for all
intents and purposes:

1. If we have a system that has no side effects, we can use strong
consistency to track incremental offsets, and if the processing is
all atomic, then we should be able to get exactly-once delivery.

2. We can use at-least-once delivery but ensure everything is
idempotent. This option is not exactly once. However, the effect
is the same. An idempotent operation is one that has the same
effect whether it is applied once or many times. If you are
unsure whether your idempotent operation succeeded or failed
after a failure, simply resend the operation; whether it ran once
or twice, your data will be in the desired state.

These two methods for getting effectively exactly-once deliveries are
not mutually exclusive. We can mix and match.

What are the best practices that come from this? Do we have a
rough idea of how many events we should have processed? Can we
check our dashboard to see how many we actually processed, and
see if there is a discrepancy that we can understand? We have to
assume, in this case, that our dashboard is correctly reflecting the
numbers of events processed, which is not always easy to do. One
solution to this problem is the Lambda Architecture, where every‐
thing is done twice—once in the fast, streaming layer in the inges‐
tion engine, and once in the batch layer. We can use a Lambda
Architecture to ensure exactly-once delivery, by checking in the
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batch-processed pipeline for duplicates and gaps—but that means a
latency-gap between batches before we’re sure that exactly-once has
been achieved. We can know tomorrow how wrong we were today,
in short. That is certainly better than not understanding how wrong
we were, but it is far from perfect.

Let’s consider partial failure, where a process or update only half fin‐
ishes. Managing partial failure is the first element of ACID transac‐
tions in a nutshell: atomicity. Atomicity means that the operation we
asked for either completely finished or it didn’t.

Let’s look to Shakespeare for a simple example of atomicity. In
Romeo and Juliet, Juliet plans to fake her death, and she sends some‐
one to tell Romeo. Unfortunately, no one tells Romeo in time, and
he believes that Juliet is actually dead, taking his own life in conse‐
quence. If this had been an ACID transaction, these two things
would have happened together: Juliet would never have faked her
death without notifying Romeo. Another example is from the movie
Dr. Strangelove. Creating a doomsday device only works if, at the
moment it’s activated, you’ve told your enemy. Doing one of these
things and not the other can cause problems.

In our earlier call center example when “call hold” ends, we want to
remove the outstanding hold record. We want to add a new comple‐
ted hold record. We want to mark an agent as busy. We want to
update the total hold time aggregates and, actually, we want to do all
four of these things. If an operation fails, it is much easier to just roll
back and then try to do it again with some fixes. In our earlier finan‐
cial example, when an order executes we want to remove it from the
outstanding orders table. We want to update our position on Micro‐
soft shares. We also want to update the aggregates for the trader, for
the algorithm, and for the time window so the dashboards people
are looking at are correct. Then we don’t lose money.

Side Effects
Let’s discuss the side effects of some popular ingestion engines in
more detail. Essentially, any time we are performing an action in one
system, it may trigger an action in another system. It is important to
note that in many cases, stream-processing systems do not have
integrated state, which can cause problems. Consider an example
where we have a Storm processing node and we are writing to Cas‐
sandra for every event that comes to the Storm node. The problem
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is that Storm and Cassandra are not well integrated. Storm does not
have control over Cassandra. If the Storm node fails and we have
written to Cassandra, or if the Storm node fails and we haven’t writ‐
ten, do we know if we have or have not written to both? How do we
recover from that? Certainly, Storm isn’t going to roll back Cassan‐
dra if it has done the writing. We have to either accept that we may
have some wrong answers, or make our application idempotent,
meaning that we can do the same thing over repeatedly and obtain
the same results, or we just accept that our answer is going to be
wrong. Also, if Storm failed and the write is retried, perhaps the
Cassandra write happens twice. If the Cassandra write fails, does the
Storm operation fail? What happens if Storm retries and Cassandra
fails repeatedly? The lack of tight integration may cause many prob‐
lems.

Spark Streaming may also cause unwanted side effects. Spark
Streaming, properly speaking, processes micro-batches, and it deals
with native integration where it writes these micro-batches into a
complete HDFS result that persists. If a Spark Streaming micro-
batch fails, and it hasn’t written a complete HDFS result set for that
micro-batch, it can be rolled back. This tight integration is how
Spark Streaming solves the problems of integrating Storm with Cas‐
sandra. By setting restrictions on how the state can be managed, the
user gets a system that’s much better at exactly-once processing, with
better failure-handling properties.

The downside of this is that, because we’re doing things in batches,
and because when things fail we retry the batches, the latency for
Spark Streaming is dramatically higher than the latency for Storm. It
varies depending on what we’re doing, but it could be orders of
magnitude difference. Another issue is that we have state restric‐
tions. We cannot write from Spark Streaming into Cassandra or
Redis. We have to write from Spark Streaming into an HDFS result
set. This isn’t to say we couldn’t write from Spark Streaming and
other systems, but we would lose all the exactly-once properties as
soon as we involve two systems that aren’t tightly integrated.
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What are the consequences? If we need to use two different systems
and we want anything close to correctness under failure, we have
two options:

1. Use two-phase commit between the two different systems.
This is similar to what VoltDB does when it pushes data into the
downstream HDFS system, OLAP store, or files on disk. What
we can do is to buffer things, wait for confirmation from the
downstream system, and then only delete things when we get
the confirmation from the downstream system.

2. Use Kafka with Replay Smart.
If we write things into Kafka, and then the consumer system
fails, it can calculate where it actually failed and pick up from
that point.

However, both of these options are difficult to get right, as they
require more thought, planning, and engineering time.

What are the consequences from these things? When we’re dealing
with fast data, integration is key. This is really counterintuitive to
people coming from the Hadoop ecosystem. If we are batch process‐
ing, integration is less important, because HDFS provides a safety
net of immutable data sets where if a batch job fails and it only cre‐
ates a partial result set, we can just remove it and start over again. By
accepting batch, we have already accepted high latency, so it doesn’t
matter, or at least it’s less inconvenient. Because the data sets in
HDFS are largely immutable, we don’t have as much risk that some‐
thing is going to fail and lose data. With fast data, our data are
actually moving around. The data’s home is actually moving
between the processing engine, the state engine, and into HDFS.
The fewer systems we have, the more tightly integrated these sys‐
tems are, and the better off we are going to be on the fast data side,
which is very different than the batch side.

In summary, there are many benefits to adding processing at the
ingestion phase of a Hadoop ecosystem. VoltDB provides a tightly
integrated ingest engine, in addition to streaming analytics and in-
transaction decisions. VoltDB also offers strong and easy-to-
implement ACID compliance.
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