

MAKING
FAST DATA

WORK

Highest throughput, lowest latency,
SQL relational database.

Architecting for the

Internet of Things

Making the Most of the Convergence of
Big Data, Fast Data, and Cloud

Ryan Betts

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Architecting for the Internet of Things
by Ryan Betts

Copyright © 2016 VoltDB, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Tim McGovern Interior Designer: David Futato
Production Editor: Melanie Yarbrough Cover Designer: Randy Comer
Copyeditor: Colleen Toporek lllustrator: Rebecca Demarest

Proofreader: Marta Justak
June 2016: First Edition

Revision History for the First Edition
2016-06-16: First Release

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Architecting for
the Internet of Things, the cover image, and related trade dress are trademarks of
O'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi-
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi-
bility to ensure that your use thereof complies with such licenses and/or rights.

978-1-491-96541-2
[LSI]

http://safaribooksonline.com

Table of Contents

1. Introduction.oooiiiiiiiiiii 1
What Is the IoT? 1
Precursors and Leading Indicators 2
Analytics and Operational Transactions 4

2. The Four Activitiesof FastData......................oooiil 9
Transactions in the IoT 10
IoT Applications Are More Than Streaming Applications 11
Functions of a Database in an IoT Infrastructure 12
Ingestion Is More than Katka 18
Real-Time Analytics and Streaming Aggregations 19
At the End of Every Analytics Rainbow Is a Decision 21

3. Writing Real-Time Applications for theloT..................... 23
Case Study: Electronics Manufacturing in the Age of the IoT 23
Case Study: Smart Meters 27

Conclusion 28

CHAPTER1
Introduction

Technologies evolve and connect through cycles of innovation, fol-
lowed by cycles of convergence. We build towers of large vertical
capabilities; eventually, these towers begin to sway, as they move
beyond their original footprints. Finally, they come together and
form unexpected—and strong—new structures. Before we dive into
the Internet of Things, let’s look at a few other technological histor-
ies that followed this pattern.

What Is the loT?

It took more than 40 years to electrify the US, beginning in 1882
with Thomas Edison’s Pearl Street generating station. American
rural electrification lagged behind Europe’s until spurred in 1935 by
Franklin Roosevelts New Deal. Much time was spent getting the
technology to work, understanding the legal and operational frame-
works, training people to use it, training the public to use it, and
working through the politics. It took decades to build an industry
capable of mass deployment to consumers.

Building telephone networks to serve consumers homes took
another 30 to 40 years. From the 1945 introduction of ENIAC, the
first electronic computer, until the widespread availability of desk-
top computers took 40 years. Building the modern Internet took
approximately 30 years.

In each case, adoption was slowed by the need to redesign existing
processes. Steam-powered factories converted to electricity through

http://www.pearlstreetinc.com/edison.html

the awkward and slow process of gradual replacement; when steam-
powered machinery failed, electric machines were brought in, but
the factory footprint remained the same. Henry Ford was the first to
realize that development, engineering, and production should
revolve around the product, not the power source. This insight
forced the convergence of many process-bound systems: plant
design, power source, supply chain, labor, and distribution, among
others.

In all these cases, towers of capability were built, and over decades of
adoption, the towers swayed slightly and eventually converged. We
can predict that convergence will occur between some technologies,
but it can be difficult to understand the timing or shape of the result
as different vertical towers begin to connect with one another.

So it is with the Internet of Things. Many towers of technology are
beginning to lean together toward an IoT reference architecture—
machine-to-machine communications, Big Data, cloud computing,
vast distributed systems, networking, mobile and telco, apps, smart
devices, and security—but it’s not predictable what the results might

be.

Precursors and Leading Indicators

Business computing and industrial process control are the main
ancestors of the emerging IoT. The overall theme has been decen-
tralization of hardware: the delivery of “big iron” computing sys-
tems built for insurance companies, banks, the telephone company,
and the government has given way to servers, desktop computers,
and laptops; as shipments of computers direct to end users have
dropped, adoption of mobile devices and cloud computing have
accelerated. Similarly, analog process control systems built to con-
trol factories and power plants have moved through phases of evolu-
tion, but here the trend has been in the other direction—
centralization of information: from dial gauges, manually-operated
valves, and pneumatic switches to automated systems connected to
embedded sensors. These trends play a role in IoT but are at the
same time independent. The role of IoT is connecting these different
technologies and trends as towers of technology begin to converge.

What are some of the specific technologies that underlie the IoT
space? Telecommunications and networks; mobile devices and their
many applications; embedded devices; sensors; and the cloud com-

2 | Chapter 1: Introduction

pute resources to process data at IoT scale. Surrounding this compli-
cated environment are sophisticated—yet sometimes conflicting—
identity and security mechanisms that enable applications to speak
with each other authoritatively and privately. These millions of con-
nected devices and billions of sensors need to connect in ways that
are reliable and secure.

The industries behind each of these technologies have both a point
of view and a role to play in IoT. As the world’s network, mobile
device, cloud, data, and identity companies jostle for position, each
is trying to shape the market to solidify where they can compete,
where they have power, and where they need to collaborate.

Why? In addition to connecting technologies, IoT connects dispa-
rate industries. Smart initiatives are underway in almost every sector
of our economy, from healthcare to automotive, smart cities to
smart transportation, smart energy to smart farms. Each of these
separate industries relies on the entire stack of technology. Thus, IoT
applications are going to cross over through mobile communication,
cloud, data, security, telecommunications, and networking, with few
exceptions.

IoT is fundamentally the connection of our devices to our context, a
convergence—impossible before—enabled now by a combination of
edge computing, pervasive networking, centralized cloud comput-
ing, fog computing, and very large database technologies. Security
and identity contribute. Each of these industries has a complex set of
participants and business models—from massive ecosystem players
(Apple, Google) to product vendors (like VoltDB) to Amazon. IoT is
the ultimate coopetition between these players. IoT is not about
adding Internet connectivity to existing processes—its about ena-
bling innovative business models that were impossible before. IoT is
a very deep stack, as shown in Figure 1-1.

Precursors and Leading Indicators | 3

http://bit.ly/1Y6bv7Q
http://bit.ly/1Y6c0i7
http://1.usa.gov/1Y6bYXD
http://smartcities.gov.in
http://www.ecow.co.uk

loT is a deep stack: Today’s focus is data

Device s Fast (in motion) Big (at rest)
Security & Policy /
— , Streaming Analytics: Exploration:
Communication |, real-time summary data science,
Fog Data Services aggregation, modeling investigation of large
More Networks [y F-===-------- datasets
Centralized Compute N Transaction Processing: Reporting:
\ per-event decisions using recommendation
Data Services AN context + history matrixes, search
Cloud Applications M indexes, trend and BI

Figure 1-1. IoT is a very deep stack

As this battle continues, an architectural consolidation is emerging:
a reference architecture for data management in the IoT. This book
presents the critical role of the operational database in that conver-
gence.

Analytics and Operational Transactions

Big Data and the IoT are closely related; later in the book, we'll dis-
cuss the similarities between the technology stacks used to solve Big
Data and IoT problems.

The similarity is important because many organizations saw an
opportunity to solve business challenges with Big Data as recently as
10 years ago. These enterprises went through a cycle of trying to
solve big data problems. First they collected a series of events or log
data, assembling it into a repository that allowed them to begin to
explore the collected data. Exploration was the second part of the
cycle. The exploration process looked for business insight, for exam-
ple, segmenting customers to discover predictive trends or models
that could be used to improve profitability or user interaction—what
we now term data science. Once enterprises found insight from
exploration, the next step of the cycle was to formalize this explora-
tion into a repeatable analytic process, which often involved some
kind of reporting, such as generating a large search index or building
a statistical predictive model.

As industries worked through the first parts of the cycles—collect,
explore, analyze—they deployed and used different technologies, so

4 | Chapter1:Introduction

on top of the analytic cycle there’s a virtuous circle of technological
and organizational innovation. New technologies lead to organiza-
tional innovations, as better insights into data enable industry lead-
ers to adopt a data-driven operational model. The cycle is depicted
in Figure 1-2.

/Gl Explore

Big Data analytic results:

1. Discoveries: seasonal predictions,

scientific results, long-term capacity
{ > N / planning

2. Optimizations: market segmentation,
fraud heuristics, optimal customer journey

\ Act Analyze /

Figure 1-2. The Big Data cycle

In the nascent IoT, the collection phase of the analytical cycle likely
deployed systems such as Flume or Kafka or other ingest-oriented
tools. The exploration phase involved statistical tools, as well as data
exploration tools, graphing tools, and visualization tools. Once val-
uable reporting and analytics were identified and formalized, archi-
tects turned to fast, efficient reporting tools such as fast-relational
OLAP systems. However, up to this point, none of the data, insights,
optimizations, or models collected, discovered, and then reported
on were put to use. So far, through this cycle, companies did a lot of
learning, but didn’t necessarily build an application that used that
knowledge to improve revenue, customer experience, or resource
efficiency. Realizing operational improvement often required an
application, and that application commonly required an operational
database that operated at streaming velocities.

Real-time applications allow us to take insights about customer
behavior or create models that describe how we can better interact
in the marketplace. This enables us to use the historical wisdom—
the analytic insights we've gained, with real-time contextual data
from the live data feed—to offer a market-of-one experience to a
mobile user, protect customers from fraud, make better offers via
advertising technology or upselling capabilities, personalize an
experience, or optimally assign resources based on real-time condi-

Analytics and Operational Transactions | 5

tions. These real-time applications, adopted first by data-driven
organizations, require operational database support: a database that
allows ACID transactions to support accurate authorizations, accu-
rate policy enforcement decisions, correct allocation of constrained
resources, correct evaluation of rules, and targeted personalization
choices.

Streaming Analytics Meet Operational Workflows

Two needs collide in IoT applications with operational workflows
that rely on streaming analytics: the high velocity, real-time data that
flows through an IoT infrastructure creates the performance to han-
dle streaming data; transactional applications that sit on top of the
data feed require operational capabilities.

There are basically two categories of applications in the IoT. One
type is applications against data at rest, streaming applications that
focus on exploration, analytics, and reporting. Then there are appli-
cations against data in motion, the fast data, operational applications
(Table 1-1). Some fast data applications combine streaming analytics
and transaction processing, and require a platform with the perfor-
mance to ingest real-time, high-velocity data feeds. Some fast data
applications are mainly about dataflows—these may involve stream-
ing, or collection and analysis of datasets to enable machine
learning.

Table 1-1. Fast and big applications

Applications against data at rest (for people Applications against data in motion

to analyze) (automated)

Real-time summaries and aggregations Hyper-personalization

Data modeling Resource management

Machine learning Real-time policy and SLA management
Historical profiling Processing loT sensor data

On the analytics side of IoT, applications are about the real-time
summary, aggregation, and modeling of data as it arrives. As noted
previously, this could be the application of a machine-learning
model that was trained on a big data set, or it could be the real-time
aggregation and summary of incoming data for real-time dash-
boarding or real-time business decision-making. Action is a critical
component; however, in this Bayesian system, predictive models are

6 | Chapter 1: Introduction

derived from the historical data (perhaps using Naive Bayes or Ran-
dom Forest classifications). Action is then taken on the real-time
data stream scored against those predictive models, with the real-
time data being added to the data lake for further model refinement.

Fuzzy Borders, Fog Computing, and the loT

There is a fuzzy border between the streaming and operational
requirements of managing fast data in IoT. There is also an increas-
ingly fuzzy border between where the computation and data man-
agement activities should occur. Will IoT architectures forward all
streams of data to a centralized cloud, or will the scale and timeli-
ness requirements of IoT applications require distributing storage
and compute to the edges—closer to the devices? The trend seems to
be the latter, especially as we consider applications that produce
high-velocity data feeds that are too large to affordably transport to
a centralized cloud. The Open Fog Consortium advocates for an
architecture that places information processing closer to where data
is produced or used, and terms this approach fog computing.

The industrial IoT field has been maturing slowly in its utilization of
big data and edge computing. Technologies like machine learning
and predictive modeling have helped industrial organizations lever-
age sensor data and automation technologies that have existed for
years in industrial settings—and at a higher level of engagement.
This has alleviated much of the inconsistency coming from a
people-driven process by automating decision-making. But it also
has revealed a gap in meaningful utilization of data. This solution
pattern aligns with the fog computing approach and points to great
potential for increasing quality control and production efficiency at
the sensor level.

Fog Computing, Edge Computing, and Data in Motion

The intersection of people, data, and IoT devices is having major
impacts on the productivity and efficiency of industrial manufac-
turing. One example of fast data in industrial IoT is the use of data
in motion—with IoT gas temperature and pressure sensors—to
improve semiconductor fabrication.

Operational efficiency is a primary driver of industrial IoT. Intro-
ducing advanced automation and process management techniques

Analytics and Operational Transactions | 7

with fast data enables manufacturers to implement more flexible
production techniques.

Industrial organizations are increasingly employing sensors and
actuators to monitor production environments in real time, initiat-
ing processes and responding to anomalies in a localized manner
under the umbrella of edge computing. To scale this ability to a pro-
duction plant level, it is important to have enabling technologies at
the fog computing level. This allows lowering the overall operating
costs of production environments while optimizing productivity
and yields.

Advanced sensors give IoT devices greater abilities to monitor real-
time temperature, pressure, voltage, and motion so that manage-
ment can become more aware of factors impacting production
efficiency. By incorporating fast data into production processes,
manufacturers can improve production efficiencies and avoid
potential fabrication delays by effectively leveraging real-time pro-
duction data.

Integrating industrial IoT with fast data enables the use of real-time
correlative analytics and transactions on multiple parallel data feeds
from edge devices. Fast data allows developers to capture and com-
municate precise information on production processes to avoid
manufacturing delays and transform industrial IoT using real-time,
actionable decisions.

Whether were building a fog-styled architecture with sophisticated
edge storage and compute resources or a centralized, cloud-based
application, the core data management requirements remain the
same. Applications continue to require analytic and operational sup-
port whether they run nearer the edge or the center. In the industrial
IoT, knowing what’s in your data and acting on it in real time
requires an operational database that can process sensor data as fast
as it arrives to make decisions and notify appropriate sensors of nec-
essary actions in a prescriptive manner.

8

| Chapter 1: Introduction

CHAPTER 2
The Four Activities of Fast Data

When we break down the requirements of transactional or opera-
tional fast data applications, we see four different activities that need
to occur in a real-time, event-oriented fashion. As data is originated,
it is analyzed for context and presented to applications that have
business-impacting side effects, and then captured to long-term
storage. We describe this flow as ingest, analyze, decide, and export.

You have to be able to scale to the ingest rates of very fast incoming
feeds of data—perhaps log data or sensor data, perhaps interaction
data that’s being generated by a large SaaS platform or maybe real-
time metering data from a smart grid network. You need to be able
to process hundreds of thousands or sometimes even millions of
events per second in an event-oriented streaming and operational
fashion before that data is recorded forever into a big data ware-
house for future exploration and analytics.

You might want to look to see if the event triggers a policy execution
or perhaps qualifies a user for an up-sell or offering campaign.
These are all transactions that need to occur against the event feed
in realtime. In order to make these decisions, you need to be able to
combine analytics derived from the big data repository with the
context in the real-time analytics generated out of the incoming
stream of data.

As this data is received, you need to be able to make decisions against
it: to support applications that process these events in real time. You
need to be able to look at the events, compare them to the events
that have been seen previously, and then provide an ability to make

a decision as each event is arriving. You want to be able to decide if a
particular event is in norm for a process, or if it is something that
needs to generate an alert.

Once this data has been ingested and processed, perhaps transacted
against and analyzed, there may be a filtering or real-time transfor-
mation process to create sessions to extract the events to be
archived, or perhaps to rewrite them into a format that’s optimal for
historical analytics. This data is then exported to the big data side.

Transactions in the loT

There’s a secret that many in the IoT application space don’t com-
municate clearly: you need transactional, operational database sup-
port to build the applications that create value from IoT data.

Streams of data have limited value until they are enriched with intel-
ligence to make them smart. Much of the new data being produced
by IoT devices comes from high-volume deployments of intelligent
sensors. For example, IoT devices on the manufacturing shop floor
can track production workflow and status, and smart meters in a
water supply system can track usage and availability levels. Whether
the data feeds come from distribution warehouse IoT devices,
industrial heating and ventilation systems, municipal traffic lights,
or IoT devices deployed in regional waste treatment facilities, the
end customer increasingly needs IoT solutions that add intelligence
to signals and patterns to make IoT device data smart.

This allows IoT solutions to generate real-time insights that can be
used for actions, alerts, authorizations, and triggers. Solution devel-
opers can add tremendous value to IoT implementations by exploit-
ing fast data to automatically implement policies. Whether it’s
speeding up or slowing down a production line or generating alerts
to vendors to increase supplies in the distribution warehouse in
response to declining inventories, end customers can make data
smart by adding intelligence, context, and the ability to automate
decisions in real time. And solution developers can win business by
creating a compelling value proposition based on narrowing the gap
from ingestion to decision from hours to milliseconds.

But current data management systems are simply too slow to ingest
data, analyze it in real time, and enable real-time, automated deci-
sions. Interacting with fast data requires a transactional database

10 | Chapter2: The Four Activities of Fast Data

architected to handle data’s velocity and volume while delivering
real-time analytics.

IoT data management platforms must manage both data in motion
(fast data) and data at rest (big data). As things generate informa-
tion, the data needs to be processed by applications. Those applica-
tions must combine patterns, thresholds, plans, metrics, and more
from analytics run against collected (big) data with the current state
and readings of the things (fast). From this combination, they need
to have some side effect: they must take actions or enable decisions.

loT Applications Are More Than Streaming
Applications

In a useful application built on high velocity, real-time data requires
integration of several different types of data—some in motion and
some essentially at rest.

For example, IoT applications that monitor real-time analytics need
to produce those analytics and make the results queryable. The ana-
lytic output itself is a piece of data that must be managed and made
queryable by the application. Likewise, most events are enriched
with static dimension data or metadata. Readings often need to
know the current device state, the last known device location, the
last valid reading, the current firmware version, installed location,
and so on. This dimension data must be queryable in combination
with the real-time analytics.

Overall, there are at least five types of data, some streaming (in
motion), and some relatively static (at rest) that are combined by a
real-time IoT application.

This combination of streaming analytics, persisted durable state,
and the need to make transactional per-event decisions all lead to a
high-speed, operational database. Transactions are important in the
IoT because they allow us to process events—inputs from sensors
and machine-to-machine communications—as they arrive, in com-
bination with other collected data, to derive a meaningful side effect.
We add data from sensors to their context. We use the reports that
were generated from the big data side, and we enable IoT applica-
tions to authorize actions or make decisions on sensor data as it’s
arriving, on a per-event basis.

loT Applications Are More Than Streaming Applications | 11

Functions of a Database in an loT
Infrastructure

Legacy data management systems are not designed to handle vast
inflows of high-velocity data from multiple devices and sources.
Thus, managing and extracting value from IoT data is a pressing
challenge for enterprise architects and developers. Even highly cus-
tomized, roll-your-own architectures lack the consistency, reliability,
and scalability needed to extract immediate business value from IoT
data.

As noted earlier, IoT applications require four data management
capabilities:

Fast ingest

Applications need high-speed ingestion, in-memory perfor-
mance, and horizontal scalability to provide a single ingestion
point for very high-velocity inbound data feeds. An operational
database must have the performance and scalability to ingest
very high-velocity inbound data feeds. These could be hundreds
of thousands or even millions of events per second, billions and
billions of events per day. The system needs the performance to
scalably ingest these events and to be able to process these
events as they arrive, discrete from one another. If the events are
batched, there must be logic to that batching. Batching introdu-
ces the worries of order of event, arrival, etc. When events are
processed on a per-event basis, the result is a more powerful
and flexible system.

Explore and analyze

There must be real-time access to applications and querying
engines, enabling queries on the stream of inbound data that
allow rules engines to process business logic. As these events are
received, stored, and processed in the operational database, the
system needs to allow access to events for applications or query-
ing engines. This is a different data flow. Data events are often a
one-way data flow of information into the operational system.
However, using a rules engine as an example of an application
accessing operational data, the data flow is a request/response
data flow—a more traditional query. The database is being
asked a question, and it must provide a response back to the
application or the rules engine.

12

Chapter 2: The Four Activities of Fast Data

Act

Applications also require the ability to trigger events and make
decisions based on the inbound stream: thresholds, rules,
policy-processing events, and more. Triggered events can be
updates to a simple notification service or to a simple queuing
service that are pushed, based upon some business logic that’s
evaluated within the operational database. An operational data-
base might store this in database logic in the form of Java-stored
procedures. Other systems might use a large number of working
applications, but this third requirement is the same, regardless
of its implementation. You need to be able to provide business
logic as events arrive to run that business logic and in many
cases, push a side effect to a queue for later processing.

Export

Finally, the application needs the ability to export accumulated,
filtered, enriched, or augmented data to downstream systems
and long-term analytics stores. Often, these systems are storing
data on a more permanent basis. They could be larger but less
real-time operational platforms. They could be a data archive.
In some situations, we see people using operational components
to buffer intraday data and then to feed it at the end of the day
to more traditional end-of-day billing systems.

As this data is collected into a real-time intraday repository or
operational system, you can start to write real-time applications
that track real-time pricing or real-time consumption, for
example, and then begin to manage data or smart sensors or
devices in a more efficient way than when data is only available
at the end of day.

A vital function of the operational database in the IoT is to provide
real-time access to queries so that rules engines can process policies
that need to be executed as time passes and as events arrive.

(Categorizing Data

There’s a truism among programmers that elegant programs “get the
data right”; in other words, beautiful programs organize data
thoughtfully. Computation, in the absence of data management
requirements, is often easily parallelized, easily restarted in case of
failure, and, consequently, easier to scale. Reading and writing state
in a durable, fault-tolerant environment while offering semantics

Functions of a Database in an loT Infrastructure | 13

(like ACID transactions) needed by developers to write reliable
applications efficiently is the more difficult problem. Data manage-
ment is harder to scale than computation. Scaling fast data applica-
tions necessitates organizing data first.

The data that need to be considered include the incoming data feed,
the metadata (dimension data) about the events in the feed, respon-
ses and outputs generated by processing the data feed, the post-
processed output data feed, and analytic outputs from the big data
store. Some of these data are streaming in nature, e.g., the data feed.
Some are state-based, such as the metadata. Some are the results of
transactions and algorithms, such as responses. Fast data solutions
must be capable of organizing and managing all of these types of
data (Table 2-1).

Table 2-1. Types of data

Data set Temporality Example

Input feed of events Stream Click stream, tick stream, sensor outputs, M2M,
gameplay metrics

Event metadata State Version data, location, user profiles, point-of-interest
data

Big data analytic outputs State Scoring models, seasonal usage, demographic trends

Event responses Events Authorizations, policy decisions, triggers, threshold alerts

Output feed Stream Enriched, filtered, correlated transformation of input feed

Three distinct types of data must be managed: streaming, stateful,
and event data. Recognizing that the problem involves these differ-
ent types of inputs is key to organizing a fast data solution for the
IoT.

Streaming data enters the fast data architecture, is processed, possi-
bly transformed, and then leaves. The objective of the fast data stack
is not to capture and store these streaming inputs indefinitely; that’s
the big data’s responsibility. Rather, the fast data architecture must
be able to ingest this stream and process discrete incoming events.

Stateful data is metadata, dimension data, and analytic outputs that
describe or enrich the input stream. Metadata might take the form
of device locations, remote sensor versions, or authorization poli-
cies. Analytic outputs are reports, scoring models, or user segmenta-
tion values—information gleaned from processing historic data that
informs the real-time processing of the input feed. The fast data

14 | Chapter2: The Four Activities of Fast Data

architecture must support very fast lookup against this stateful data
as incoming events are processed and must support fast SQL pro-
cessing to group, filter, combine, and compute as part of the input
feed processing.

As the fast data solution processes the incoming data feed, new
events—alerts, alarms, notifications, responses, and decisions—are
created. These events flow in two directions: responses flow back to
the client or application that issued the incoming request; and alerts,
alarms, and notifications are pushed downstream, often to a dis-
tributed queue for processing by the next pipeline stages. The fast
data architecture must support the ability to respond in milliseconds
to each incoming event and must integrate with downstream queu-
ing systems to enable pipelined processing of newly created events.

Categorizing Processing

Fast data applications present three distinct workloads to the fast
data portion of the emerging IoT stack. These workloads are related
but require different data management capabilities and are best
explained as separate usage patterns. Understanding how these pat-
terns fit together—what they share and how they differ—is the key
to understanding the differences between fast and big, and the key
to making the management of fast data applications in the IoT relia-
ble, scalable, and efficient.

Combining the Data and Processing Discussions
Table 2-2 shows a breakdown of the different usage patterns.

Table 2-2. Differing usage patterns

Real-time decisions Real-time ETL Real-time analytics/SQL
caching
Input feed Personalization, real- Sensor data, M2M, loT Real-time feed being
time scoring requests observed for operational
intelligence
Event Policy parameters; POl, ~ Metadata about the
metadata user profiles sensors infrastructure
(versions, locations, and so
on)
Big data Scoring rubrics; user Interpolation parameters; OLAP report results in
analytic segmentation profile min/max threshold “SQL Caching” use cases.
outputs validation parameters

Functions of a Database in an loT Infrastructure | 15

Real-time decisions Real-time ETL Real-time analytics/SQL

caching
Event Decisions and Alerts/notifications on Dashboard and BI query
responses and customization results exceptional events (or responses. Counters,
alerts exceptional sequences of leaderboards,
events) aggregates, and time-

series groupings for
operational monitoring
Output feed Archive of transaction Enriched, filtered,

stream for historical processed event feed
analytics handed downstream

Making real-time decisions

The most traditional processing requirement for fast data applica-
tions is simply fast responses. As high-speed events are being
received, fast data enables the application to execute decisions: per-
form authorizations and policy evaluations, calculate personalized
responses, refine recommendations, and offer responses at predicta-
ble millisecond-level latencies. These applications often need per-
sonalization responses in line with customer experience (driving the
latency requirement). These applications are, very simply, modern
OLTP. These fast data applications are driven by machines, middle-
ware, networks, or high-concurrency interactions (e.g., ad-tech opti-
mization or omni-channel, location-based retail personalization).
The data generated by these interactions and observations are often
archived for subsequent data science. Otherwise, these patterns are
classic transaction processing use cases.

Meeting the latency and throughput requirements for modern
OLTP requires leveraging the performance of in-memory databases
in combination with ACID transaction support to create a process-
ing environment capable of fast per-event decisions with latency
budgets that meet user experience requirements. In order to process
at the speed and latencies required, the database platform must sup-
port moving transaction processing closer to the data. Eliminating
round trips between client and database is critical to achieving
throughput and latency requirements. Moving transaction process-
ing into memory and eliminating client round trips cooperatively
reduce the running time of transactions in the database, further
improving throughput. (Recall Little’s Law.)

16 | Chapter2: The Four Activities of Fast Data

Enriching without batch ETL

Real-time data feeds often need to be filtered, correlated, or
enriched before they can be “frozen” in the historical warehouse.
Performing this processing in real time, in a streaming fashion
against the incoming data feed, offers several benefits:

« Unnecessary latency created by batch ETL processes is elimina-
ted and time-to-analytics is minimized.

« Unnecessary disk IO is eliminated from downstream big data
systems (which are usually disk-based, not memory-based).

« Application-appropriate data reduction at the ingest point elim-
inates operational expense downstream, so not as much hard-
ware is necessary.

o Operational transparency is improved when real-time opera-
tional analytics can be run immediately without intermediate
batch processing or batch ETL.

The input data feed in fast data applications is a stream of informa-
tion. Maintaining stream semantics while processing the events in
the stream discretely creates a clean, composable processing model.
Accomplishing this requires the ability to act on each input event—a
capability distinct from building and processing windows.

These event-wise actions need three capabilities: fast lookups to
enrich each event with metadata; contextual filtering and sessioniz-
ing (reassembly of discrete events into meaningful logical events is
very common); and a stream-oriented connection to downstream
pipeline processing components (distributed queues like Kafka, for
example, or OLAP storage or Hadoop/HDES clusters). Fundamen-
tally, this requires a stateful system that is fast enough to transact
event-wise against unlimited input streams and able to connect the
results of that transaction processing to downstream components.

Transitioning to real-time

In some cases, backend systems built for batch processing are being
deployed in support of IoT sensor networks that are becoming more
and more real time. An example of this is the validation, estimation,
and error platforms sitting behind real-time smart grid concentra-
tors. There are many use cases (real-time consumption, pricing, grid
management applications) that need to process incoming readings

Functions of a Database in an loT Infrastructure | 17

in real time. However, traditional billing and validation systems
designed to process batched data may see less benefit from being
rewritten as real-time applications. Recognizing when an application
isn't a streaming or fast data application is important.

A platform that offers real-time capabilities to real-time applications
while supporting stateful buffering of the feed for downstream batch
processing meets both sets of requirements.

Ingestion Is More than Kafka

Kafka is a persistent, high-performance message queue developed at
LinkedIn and contributed to the Apache Foundation. Kafka is highly
available, partitions (or shards) messages, and is simple and efficient
to use. Great at serializing and multiplexing streams of data, Kafka
provides “at least once” delivery, and gives clients (subscribers) the
ability to rewind and replay streams.

Kafka is one of the most popular message queues for streaming data,
in part because of its simple and efficient architecture, and also due
to its LinkedIn pedigree and status as an Apache project. Because of
its persistence capabilities, it is often used to front-end Hadoop data
feeds.

Kafka’s ability to handle high-velocity data feeds makes it extremely
interesting in the big data/fast data application space. With Kafka, a
database can subscribe to topics and transact on incoming messages,
as fast as Kafka can deliver. This capability allows fast data applica-
tions to process and make decisions on data the moment it arrives,
rather than waiting for business logic to batch-process data in the
Hadoop data lake.

Kafka Use Cases

Unlike traditional message queues, Kafka can scale to handle hun-
dreds of thousands of messages per second, thanks to the partition-
ing built in to a Kafka cluster. Kafka can be used in the following use
cases (among many more):

o Messaging
» Log aggregation

« Stream processing

18 | Chapter 2: The Four Activities of Fast Data

 Event sourcing

« Commit log for distributed systems

Kafka is a message queue, but it won’t get you to the IoT application.

Beyond Kafka

In IoT implementations, Kafka is rarely on the front line ingesting
sensor and device data. Often there is a gateway that sits in front of
the queueing system and receives data from devices directly.

For example, Message Queue Telemetry Transport (MQTT) is a
lightweight publish/subscribe protocol designed to support the
transfer of data between low-power devices in limited-bandwidth
networks. MQTT supports the efficient connection of devices to a
server (broker) in these constrained environments.

Applications using MQTT can retrieve device and sensor data and
coordinate activities performed on devices by sending command
messages.

MQTT is used for connections in remote locations where a small
code footprint is required or network bandwidth is limited. Running
on top of TCP/IP, MQTT requires a message broker, in many cases,
Kafka. The broker is responsible for distributing messages to clients
based on the message topic.

Several other lightweight brokers are available, including RabbitMQ
(based on the AMQP protocol), XMPP, or the IETF’s Constrained
Messaging Protocol.

Real-Time Analytics and Streaming
Aggregations

Typically, organizations begin by designing solutions to collect and
store real-time feeds as a test bed to explore and analyze the busi-
ness opportunity of fast data before they deploy sophisticated real-
time processing applications. Consequently, the on ramp to fast data
processing is making real-time data feeds operationally transparent
and valuable: is collected data arriving? Is it accurate and complete?
Without the ability to introspect real-time feeds, this important data
asset is operationally opaque, pending delayed batch validation.

Real-Time Analytics and Streaming Aggregations | 19

http://thenewstack.io/mqtt-protocol-iot/
https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Broker_(service-oriented_architecture)
https://en.wikipedia.org/wiki/Messaging_pattern
https://www.rabbitmq.com/protocol.html

These real-time analytics often fall into four, conceptually simple
capabilities: counters, leaderboards, aggregates, and time-series
summaries. However, performing these at scale, in real time, is a
challenge for many organizations that lack fast data infrastructure.

Organizations are also deploying in-memory SQL analytics to scale
high-frequency reports—or commonly to support detailed slice,
dice, subaggregation, and groupings of reports for real-time end-
user BI and dashboards. This problem is sometimes termed “SQL
Caching,” meaning a cache of the output of another query, often
from an OLAP system, that needs to support scale-out, high-
frequency, high-concurrency SQL reads.

Shortcomings of Streaming Analytics in the loT

Streaming analytics applications are centered on providing real-time
summaries, aggregation, and modeling of data, for example, a
machine-learning model trained on a big data set or a real-time
aggregation and summary of incoming data for real-time dash-
boarding. These “passive” applications analyze data and derive
observations for human analysts, but don’t support automated deci-
sions or actions.

Transactional applications, on the other hand, take data events as
they arrive, add context from big data or analytics—reports gener-
ated from the big data side—and enable IoT applications to person-
alize, authorize, or take action on data on a per-event basis as it
arrives in real time. These applications require an operational com-
ponent—a fast, in-memory operational database.

Why Integrate Streaming Analytics and Transactions?

IoT platforms deliver business value by their ability to process data
to make decisions in real time, to archive that data, and to enable
analytics that can then be turned back into actions that have impact
on people, systems, and efficiency. This requires the ability to com-
bine real-time streaming analytics and transactions on live data
feeds.

The data management required for the centralized computing func-
tions of an IoT platform is essentially the same stack of data man-
agement tools that has evolved for traditional big data applications.
One could argue that IoT applications are an important type of big
data application.

20 | Chapter 2: The Four Activities of Fast Data

Managing Multiple Streams of High-Velocity Inbound
Data

Data flows from sensors embedded in electric meters that monitor
and conserve energy; from sensors in warehouse lighting systems;
from sensors embedded in manufacturing systems and assembly-
line robots; and from sensors in smart home systems. Each of these
sensors generates a fast stream of data. This high-velocity data flows
from all over the world, from billions of endpoints, into edge com-
puting, fog computing, and the cloud, and thence to data-processing
systems where it is analyzed and acted on before being passed to
longer-term analytic stores.

As we look forward through the rest of the IoT architecture stack
and explain some of the different examples of what companies and
entities have built in terms of IoT platforms, we provide examples of
more traditional big data platforms; this will illustrate that the refer-
ence architectures built for IoT infrastructures closely resemble the
architectures assembled for other non-IoT big data applications.
This emerging pattern is a good sign: it means we have begun to
find a series of tools or a stack of tools that has applicability to a
breadth of problems, signaling stability in the data management
space.

At the End of Every Analytics Rainbow Is a
Decision

People are seldom the direct users of operational systems in the IoT
—the users are applications. Application requirements in the faster
IoT infrastructure happen on a vastly different scale at a vastly dif-
ferent velocity than they do in other systems. The role of managing
business data in operational platforms is changing from one in
which humans manage data directly by typing queries into a data-
base to one in which machine-to-machine communications and
sensors rely on automated responses and actions to meet the scale
and velocity challenges of the IoT. IoT apps require an operational
database component to provide value by automating actions at
machine speed.

The following architectural observations implicitly state the require-
ments for an operational database in an IoT platform. Use of an
operational component is the only way to move beyond the insights

At the End of Every Analytics Rainbow Is a Decision | 21

gleaned from analytics to make a decision or take an action in the
IoT.

First, an [oT architecture needs a rules engine to enable the augmen-
tation or filtering of data received from a device, write data received
from a device to a database, save a file to another resource, send a
push notification, publish data to a queue for downstream process-
ing, or invoke a snippet of code against data as it’s arriving to per-
form some kind of business processing or transformation.

Almost all of these functions require access to operational data. If
youre going to enrich data as it arrives, you need to have access to
the dimension data to use to enrich incoming data streams, or you
need access to the real-time analytics that have been aggregated to
enrich the incoming sensor message. An operational component can
filter information from a device. Filtering is rarely done in a stateless
environment. Filters are rules applications that require state to know
when to trigger an action. Rules engines know the first time a sys-
tem sees a message, the most recent time it’s seen a message, if the
message indicates that a device has moved, and more.

These filtering applications require access to operational data. Noti-
fications are typically sent as the result of a policy trigger. The sys-
tem needs to understand whether a notification is of interest to a
downstream consumer, whether youre notifying that a threshold
has been crossed, and so on.

Rule application components require tight integration with opera-
tional data. This is fundamentally the role of an operational database
in an IoT platform: to provide real-time interactive access to intra-
day data or to recent data needed to evaluate rules to manage the
routing of data to downstream applications or to process real-time
business logic as these events are arriving. What makes these opera-
tional versus pure analytical functions is that they happen in line
with the event arriving and being first processed, and often they
happen in line with a user experience or a decision that needs to be
propagated back to a device.

Take note: very fast decisions are the lingua franca of the IoT. They
take the analytics and data generated by sensors and connected devi-
ces, add context, and provide necessary actions back to devices, also
pushing that data via export upstream to longer-term analytics
stores. Without decisions and actions, the IoT would simply be the
sound of one hand clapping.

22 | Chapter 2: The Four Activities of Fast Data

CHAPTER 3
Writing Real-Time
Applications for the loT

Let’s look at examples of real-time applications for the IoT.

Case Study: Electronics Manufacturing in the
Age of the loT

A global electronics manufacturer of IoT-enabled devices was deal-
ing with multiple streams of high-velocity inbound data. Figure 3-1
shows its architecture.

Event data from thousands to millions of devices—some mobile,
some “smart,” some consumer appliances—arrived via the cloud to
be processed by numerous apps, depending on the device type. Sit-
ting between the data sources and the database tier (Cassandra,
PostgreSQL, and Hadoop) was a rules engine that needed high-
speed access to daily event data (e.g., a mobile device subscriber
using a smart home app), which it held in an in-memory data grid
used as an intraday cache.

As the rules engine ingested updates from the smart home applica-
tion, it used the intraday data (such as location data on the device)
from the in-memory grid to take actions (such as turn on lights
when the mobile device wasn’t in the home).

23

Data Sources

gee

y A VV

[ERu[es ‘.[In-Memory Grid]
ngine

4--------
4---=-=---

andra adoop PostgreSQL

Figure 3-1. The architecture of a manufacturer of IoT-enabled devices

The rules engine queried Cassandra directly, creating latency and
consistency issues. In some cases, the rules engine required stricter
consistency than was guaranteed by Cassandra, for example, to
ensure that a rule’s execution was idempotent. Scalability issues
added to the problem—the rules engine couldn’t push more sophis-
ticated product kits to Cassandra fast enough.

The architecture included PostgreSQL for slow-changing dimension
data. The in-memory grid cached data from PostgreSQL for use by
the rules engine, but the rules engine needed faster access to Cassan-
dra. In addition, each app needed to replicate the incoming event
stream to Cassandra and Hadoop.

24 | Chapter 3: Writing Real-Time Applications for the loT

Further, the scale-out in-memory grid was not capable of functions
such as triggering, alerting, or forwarding data to downstream sys-
tems. This meant the rules engine and the applications that sat on
top of the grid were each responsible for ETL and downstream data
push, creating a many-to-many relationship between the ETL or
ingest process from the incoming data stream to downstream sys-
tems. Each application was responsible for managing its own fault-
tolerant ingestion to the long-term repository.

The platform was strangled by the lack of a consolidated ingest
strategy, painful many-to-many communications, and performance
bottlenecks at the rules engine, which couldn’t get data from Cassan-
dra quickly enough to automate actions. Grid caching was insuffi-
ciently fast to process stateful data that required complex logic to
execute transactions in the grid, for example, the instruction previ-
ously mentioned—turn on the lights in the smart home whenever
the mobile device is outside the home.

Fast Data as a Solution

A new, simplified architecture was implemented that replaced the
in-memory grid with a SQL operational database. With this fast
operational database, the rules engine was able to use SQL for more
specific, faster queries. Because it is a completely in-memory data-
base, it met the latency and scalability requirements of the rules
engine. The database also enabled in-memory aggregations that pre-
viously were difficult due to Cassandra’s engineering (e.g., consis-
tency) trade-offs.

Because the database is relational and operational, it became the
authoritative owner of many of the manufacturer’s master detail
records. Master detail records could be associated with intraday
events, easing operations, and maintaining consistency between
inbound data and dimension data (e.g., device id data). Finally,
using the database’s export capability created a unified platform to
take the enriched, augmented, filtered and processed intraday event
data and push it or replicate it consistently to Cassandra and
Hadoop while replicating dimension data changes to the Post-
greSQL master detail record system.

Note the simplified architecture shown in Figure 3-2.

Case Study: Electronics Manufacturing in the Age of theloT | 25

Data Sources

¢-------

I I
| |
| |
] I
| |
| |
| |
A 4 A 4
((aep) (e

|
|
|
[}
|
|
|
A 4
avp)

VoltDB
Hadoop

Figure 3-2. Simplified architecture for manufacturer of IoT devices

Adding an operational database to this architecture solved three
pain points: it provided an extremely fast consolidated ingest point
for high-velocity feeds of inbound IoT data; it provided processing
on inbound data requests that required state, history, or analytic
output; and it provided real-time processing of live data, enabling
automated actions in response to inbound requests, all with speed
that matched the velocity of the inbound data feeds.

In this IoT example, the operational database served not only as a
fast intraday in-memory data cache but also as a transaction pro-
cessing engine and a database of record. The bottleneck of reading
data from Cassandra was eliminated, as was the n-squared complex-
ity of ingesting and orchestrating many-to-many communications
from apps and myriad data sources. An additional benefit was access
to analytics that were not previously available from Cassandra due
to the sheer volume of processed data.

26 | Chapter 3: Writing Real-Time Applications for the loT

Case Study: Smart Meters

A number of electric utilities are using operational databases to col-
lect real-time data from IoT smart electric and water metering sys-
tems. These different IoT platforms require all four of the
capabilities of an operational database we described.

Smart metering platforms typically provide meter readings to the
IoT data management infrastructure every 15 minutes. Usually
meters are associated with some kind of a concentrator—a device in
a sensor network that collects data flowing from separate sensors or
meters, batches that information, and provides it to the data man-
agement infrastructure. Once that data has arrived, there are a num-
ber of different rules that need to be applied. Industry-specific
validation, error checking, and estimation rules need to be applied.
For example, if a meter reading is lost, the system might want to
interpolate the value between the last two events. The goal is to be
able to guarantee that a reading isn’t obviously corrupt, and that its a
value that is valid.

With a number of other relatively straightforward validation pro-
cesses, being able to supply or execute these validation processes in
near real time improves operational efficiency, makes it clear when
data is being corrupted or lost, and also allows interesting opera-
tional applications to be developed as a benefit of the real-time
infrastructure. For example, if the system hasn't received readings
from some set of meters over the last two reporting periods, its
important to understand if those meters are associated with one
concentrator or are distributed across a number of concentrators.
This understanding might indicate two different operational prob-
lems that need to be resolved in different ways.

At the same time, as this data is being collected into a real-time
intraday repository or operational system, you can start to write
real-time applications that track real-time pricing and consumption,
and then begin to manage data or smart metering grids in a more
efficient way than when data is only available at the end of day.
However, the billing infrastructure that’s calculating total utilization
and generating the eventual bill to the consumer is still expecting
data in a bulk fashion. This system doesn’t expect data to trickle in
over the course of the day; rather, it expects the traditional format of
data to be provided at the end of the day or at the end of some
longer period. In this case, the system needs to be able to collect that

Case Study: Smart Meters | 27

intraday data, apply the events, rules, and triggers to it that we dis-
cussed, and then at the end of the billing period, gracefully dump
that to the billing system as an input in the time period that it
expects. The same process applies if the utility wants to capture all of
this data to a historical system for long-term offline analytics, explo-
ration, and reporting.

Here we see that a smart metering system uses an operational data-
base in all four ways that were described earlier—for fast ingest of
events, the application or the ability for a rules engine to access real-
time data to support real-time analytics that might trigger alerting/
alarming to other operational applications, to buffer data for export
to an end-of-day billing system, and then finally, to become an
ingest point to an offline storage system or a nearline storage system
like Hadoop.

Conclusion

What's interesting about IoT is what can result from the conver-
gence of the macro-trends discussed in the introduction, and what
happens as the different industries that use this shared infrastruc-
ture begin to lean together and collide with one another. IoT is
inseparable from data and cloud. The overlap between these sectors
is strong, and, like cloud, IoT is an extremely data-driven effort. IoT
platforms derive their value from their ability to process data to
make decisions, to archive that data, and to enable analytics that can
then be turned back into actions that have impact on people and
efficiency.

Finally, let’s talk a little bit about what might happen going forward,
using an example from another industry. In the early 1900s, there
were hundreds of companies making automobiles. Think of the
database universe maps analysts produce with a hundred logos. In
the 1900s, that's what the auto manufacturing industry looked like.
Everybody was making cars, and there were many different kinds of
cars: electric cars, steam cars, and cars with internal combustion
engines. The manufacturers came from different disciplines:
carriage-maker, wheelwright, engine-builder, metal-worker, loco-
motive builder. Their different focuses influenced the types of cars
they built: the Stanley Steamer, the Flocken Elektrowagen (the first
electric-powered car), and the hydrogen-gas fueled Hippomobile.
Nikolaus Otto built the first viable internal combustion engine. Each

28 | Chapter 3: Writing Real-Time Applications for the loT

effort had its own appeal, but over time, one model claimed 50% of
the market very quickly: the Ford Model T, which was cheap, relia-
ble, and available in any color you wanted, as long as it was black.
Henry Ford, and the way in which he built that car, forced hundreds
of towers of vertical capabilities to converge and drove hundreds of
other manufacturers out of business in the span of a decade or two.

What we're beginning to see in the world of IoT is people learning
how to build scalable IoT platforms, composed of elements contrib-
uted by other industries and technologies that are converging. Peo-
ple in these industries are beginning to understand the roles that
different data technologies have in IoT platforms. We are beginning
to see consistent use of operational databases in those platforms.
We're starting to see a lot of different architectures replaced and
consolidated into a relatively consistent architecture thats being
adopted across a number of different implementations, from IoT to
mobile to manufacturing to energy to financial services. It's reason-
able to expect this process of convergence within the database space
to continue, and to start to see best practices emerge in the develop-
ment of the IoT.

Conclusion | 29

About the Author

Ryan Betts is one of the VoltDB founding developers and is pres-
ently VoltDB CTO. Ryan came to New England to attend WPI. He
graduated with a B.S. in Mathematics and has been part of the Bos-
ton tech scene ever since, earning an MBA from Babson University
along the way. Ryan has been designing and building distributed
systems and high-performance infrastructure software for almost 20
years. Chances are, if you've used the Internet, some of your ones
and zeros passed through a slice of code he wrote or tested.

	VoltDB
	Copyright
	Table of Contents
	Chapter 1. Introduction
	What Is the IoT?
	Precursors and Leading Indicators
	Analytics and Operational Transactions
	Streaming Analytics Meet Operational Workflows
	Fuzzy Borders, Fog Computing, and the IoT

	Chapter 2. The Four Activities of Fast Data
	Transactions in the IoT
	IoT Applications Are More Than Streaming Applications
	Functions of a Database in an IoT Infrastructure
	Categorizing Data
	Categorizing Processing
	Combining the Data and Processing Discussions

	Ingestion Is More than Kafka
	Kafka Use Cases
	Beyond Kafka

	Real-Time Analytics and Streaming Aggregations
	Shortcomings of Streaming Analytics in the IoT
	Why Integrate Streaming Analytics and Transactions?
	Managing Multiple Streams of High-Velocity Inbound Data

	At the End of Every Analytics Rainbow Is a Decision

	Chapter 3. Writing Real-Time Applications for the IoT
	Case Study: Electronics Manufacturing in the Age of the IoT
	Fast Data as a Solution

	Case Study: Smart Meters
	Conclusion

	About the Author

